Multiply-imaged supernovae with SNAP

Daniel Holz Institute for Theoretical Physics UCSB

AAS meeting Washington, D.C. January 9, 2002

What would a multiply-imaged supernova look like?

Multiple imaging signature:

- Multiple supernovae closely spaced on the sky (\sim arcseconds)
- Time delay between supernovae (~ months)
- Different relative brightnesses, but identical time profiles and spectra

Q0957+561: A multiply-imaged quasar

Strong lensing distributions

For multiply-imaged pairs at z = 2, sample distributions of image separation, time delay, and image brightness (of the dimmer image).

How often does multiple-imaging happen?

 $\tau(z)$ is the probability for a given (point) source to be multiply-imaged (optical depth), as a function of redshift, z.

 \Rightarrow At z=2, approximately 0.1% of sources are multiply imaged.

Note: The likelihood for strong lensing is independent of the nature of the source. Flat spectrum radio surveys (JVAS & CLASS) find:

 $\sim 0.1\%$ of sources are lensed

image separations: $0.1'' \lesssim \Delta\Theta \lesssim 15''$

time delay between images: 1 week $\lesssim \Delta t \lesssim$ 2 years

Multiple-imaging and SNAP

Type Ia supernovae

- Optical depth to strong lensing
- Expected population distribution of SNe
- SNAP filters, observing strategy, etc.
- De/amplification of lensed images
- Time delays and image separations
 - \Rightarrow SNAP will see 2 multiply-imaged type Ia supernovae per year

Type II supernovae

- Many more than type Ia ($\sim 10^4/\text{year}$)
- Peak brightness over 2 magnitudes dimmer than type Ia
- Large intrinsic dispersion (> 1 magnitude)
 - \Rightarrow SNAP will see 6 multiply-imaged type II supernovae per year

Note: The rate of multiple (clustered) SNe is comparable to that of multiply imaged SNe. Distinguishing between these cases is necessary, and non-trivial.

Who cares?

Science from multiply-imaged supernovae:

- Independent measure of the Hubble constant
 - Extraordinarily accurate measurements of time delay, image separation, and relative flux
 - Break the mass-sheet degeneracy (Type Ia are standard candles)
 - Lensed SN disappears, allowing cleaner reconstruction of lens
 Co-added, deep images of (lensed) host constrains lens modeling
- Independent measure of cosmological parameters $(\Omega_m, \Omega_{\Lambda}, \text{ fraction of macroscopic dark matter})$
 - The fraction of multiply imaged sources (as a function of z) is a sensitive measure of Ω_{Λ} .
 - The distribution of image separations, time delays, brightnesses, morphologies, etc., are measures of Ω_m , Ω_{Λ} , the matter distribution within galaxies and clusters, and properties of the dark matter.

Conclusions

• It is likely that the coming decade will bring the first observations of multiply-imaged supernovae

SNAP will certainly find such systems

• Multiply-imaged supernova systems offer independent and powerful measures of a range of important cosmological parameters